Table II

No.	Bacteriostatic Activities (m.i.c., $\left.1 / X \times 10^{-3}\right)^{a}$ of Phenolic Derivatives									
	M. pyogenes var. aureus (S)	M. pyogenes var. aureus (R)	$\begin{gathered} \text { Sarcina } \\ \text { lutea } \end{gathered}$	Streptococcus faecalis	Escherichia coli No. 198	Aerobacter aerogenes	Salmonella pullorum	$\begin{gathered} \text { Pseudo- } \\ \text { monas } \\ \text { aeruginosa } \end{gathered}$	Proteus mirabulis	Pioteus vulgari
I	80	80	80	80	10	10	20	20	20	20
II	1280	1280	1280	640	20	20	20	10	10	10
III	1280	1280	2560	1280	10	20	20	10	10	10
IV	2560	640	640	320	80	10	20	10	40	10
V	640	640	640	640	20	20	20	10	20	10
VI	640	1280	2560	1280	10	<10	<10	<10	<10	<10
VII	2560	2560	5120	2560	20	10	160	20	10	10
VIII	320	320	2560	1280	10	<10		10	10	10
IX	80	80	80	80	20	20	160	10	20	10
X	80	160	320	80	20	10	<10	80	20	10
XI	160	160	320	160	20	10	40	10	20	20
XII	640	640	1280	1280	20	10	20	10	10	10
XIII	640	320	640	320	20	10	10	10	10	10
XIV	160	160	160	160	20	10	10	10	20	20
XV	1280	640	640	640	10	10	80	10	20	20
XVI	1280	1280	1280	1280	80	10	<10	10	40	40
XVII	640	640	1280	320	10	<10	40	10	20	10
XVIII	1280	2560	2560	1280	40	20	20	10	40	40
XIX	640	1280	1280	640	160	20	10	10	10	20
XX	2560	2560	2560	2560	10	10	10	20	20	10
XXI	640	320	160	2560	<10	<10	10	10	10	10
XXII ${ }^{\text {b }}$	16000	16000	16000	16000	40	40	40	20	20	20

${ }^{a}$ Minimal inhibitory concentration determined by serial tube dilution technique, e.g., the value of 80 is equivalent to a concentration of one part in 80,000 . The serial tube dilution technique can give quite wide variations in results and the relative order of activity is more important than the absolute values listed. ${ }^{b}$ Hexachlorophene.
(3,4-dichlorobenzyl)-4,6-dichlorophenol, and 2-(3,4-dichloroben-zyl)-4- n-octadecylphenol were obtained by the following procedure which describes the preparation of 2-(3,4-dichlorobenzyl)-4chlorophenol.

3,4-Dichlorobenzyl chloride (39 g ., 0.2 mole) was added over a period of 15 min . to a stirred mixture of 4 -chlorophenol (154.3 g ., 1.2 moles) and fused zinc chloride ($2 \mathrm{~g} ., 0.01$ mole) at 100°. This mixture was heated further at 150° for 4 hr , Fractional distillation of the reaction product gave 126.1 g . of unchanged 4chlorophenol, b.p. $80-100^{\circ}(0.4 \mathrm{~mm}$.), and 50 g . (87%) of $2-(3,4-$ dichlorobenzyl)-4-chlorophenol, b.p. $176-180^{\circ}(0.3 \mathrm{~mm}$.); m.p. $69-74^{\circ}$. Recrystallization from petroleum ether (b.p. $60-90^{\circ}$) raised the melting point to $77-78^{\circ}$.

2,6-Di-(3,4-dichlorobenzyl)-4-chlorophenol.-A mixture of 4-chlorophenol (47.6 g. 0.37 mole), 3,4-dichlorobenzyl chloride ($77.1 \mathrm{~g} ., 0.4$ mole), and zinc chloride ($0.5 \mathrm{~g} ., 0.003$ mole) was stirred at 100° for 2 hr . The mixture on distillation gave unchanged reactants, b.p. $60-90^{\circ}(0.4 \mathrm{~mm}$.); yield 43.5 g . and 36.5 g. (34\%) of 2-(3,4-dichlorobenzyl)-4-chlorophenol, b.p. 190-200 (0.3 mm .).
The distillation residue was dissolved in chloroform (200 ml .) and the solution was washed with two $100-\mathrm{ml}$. portions of water. The chloroform solution was dried over anhydrous sodium sulfate and then evaporated in vacuo. The oily residue (30.5 g .) was crystallized from benzene and then from petroleum ether. The purified crystals of 2,6-di-(3,4-dichlorobenzyl)-4-chlorophenol melted at $141-142^{\circ}$, yield 8.6 g . (10.4%).

2-(3,4-Dichlorobenzyl)-4,6-dichlorophenol.-A mixture of 2,4-dichlorophenol (196 g ., 1.2 mole) and anhydrous aluminum chloride (5 g .) was stirred at 150° for 1 hr . until hydrogen chloride evolution had ceased. 3,4-Dichlorobenzyl chloride (117 g ., 0.6 mole) was added to this stirred mixture at 150° over a period of 30 min . and the heating was continued for an additional 3 hr . The cooled mixture was dissolved in chloroform (500 ml .) and the chloroform solution was washed with $5 N$ hydrochloric acid (500 ml .) and water (500 ml .). This solution was dried over anhydrous sodium sulfate and the chloroform was removed by evaporation. Fractional distillation of the residue gave 100 g . of unchanged 2,4-dichlorophenol, b.p. $60-80^{\circ}(0.2 \mathrm{~mm}$.), and 135 g. (70%) of 2 -(3,4-dichlorobenzyl)-4,6-dichlorophenol, b.p. $170-180^{\circ}\left(0.2 \mathrm{~mm}\right.$.) ; m.p. $80-88^{\circ}$. This product was recrystallized from petroleum ether to a constant melting point of $91-92^{\circ}$, yield 97 g . (50%).

2-(3,4-Dichlorobenzyl)-4-n-octadecylphenol.-4-n-Octadecylphenol ($10.4 \mathrm{~g} ., 0.03$ mole) and fused zinc chloride (0.1 g .) were heated to 160° and 3,4-dichlorobenzyl chloride (1.96 g .,
0.01 mole) was added dropwise with stirring. The reaction was held at $150-160^{\circ}$ for 1 hr . after which the cooled product was dissolved in ether (75 ml .). The ether solution was washed with water (50 ml .) and dried. After the ether was removed by evaporation, the unchanged reactants [b.p. $212-220^{\circ}(0.3 \mathrm{~mm}$.), yield 6 g .J were recovered by distillation. The distillation residue was dissolved in benzene (100 ml .) and passed through a silica gel column. The column was eluted with benzene in $200-\mathrm{ml}$. portions. Fractions I, II, and V on evaporation gave oils while fractions III and IV gave the desired product, yield 3.71 g . (74%). The melting point was raised from $56-68^{\circ}$ to a constant value of $68-69^{\circ}$ by recrystallizing from petroleum ether.

Some 2-Substituted Aminopurines and Purine Analogs ${ }^{1}$

R. M. Cresswell, T. Stratuss, and George Bosworth Brown

Division of Nucleoprotein Chemistry, Sloan-Kettering Institute for Cancer Research; Sloan-Kettering Division of Cornell University Medical College, New York, New York

Received July 11, 1963

Cresswell and Strauss ${ }^{2}$ have reported the activating effect of a 5 -nitroso group on the nucleophilic displacement of the 2-methylmercapto group in pyrimidines ($\mathrm{I} \rightarrow \mathrm{II}$). From the several 2 -substituted amino pyrimidines (III, $\mathrm{a}=6-\mathrm{OH} ; \mathrm{b}=6-\mathrm{NH}_{2}$) thus obtained, ${ }^{2}$ a number of 8 -mercaptopurines (IV), v-triazolo [d]pyrimidines (V), and purines (VI) have now been prepared. Their properties are given in Table I.

None of these has yet shown significant tumor inhibitory activity. ${ }^{3}$ It is of interest that the 6 -amino- 8 -

[^0]l＇abif； 1

Compourad	R	Recrystal－ lization solvent	Yeld．	11．1．，${ }^{\circ}$	$\begin{gathered} k_{i} i n \\ \text { A } \end{gathered}$	$\begin{gathered} \text { Nem } \\ \text { ib } \end{gathered}$	－	in HO at mH give	
TVb	Morpholino	Ethanol	68	$>300^{\circ}$	11.66	0.23	23		pli 12．3
							273	（25．8）329（15）．6）	phl 1．t
111	Piperidino	Pithanol	76	$>300^{\circ}$	81	$\because 2$	29；	（22． 3 ） 316 ¢ 1509	plf 1：3
							$\because 2$	21 23：30（11 6）	1H1：
IVI，	l＇yronidino		（if）	＞3000	（i）	12	29	20，－318）	pll 12：
							203	2）6） 332 （1：内	1，11 1 3
$11: 1$	Morpholino	Water	（6）	＞3000	ti	35	23	21．2）：30：3（150）	111121
							－－	12＋．9）305（16．3）	111 1．：
IV：	Hiperidino	＂	i：	$>300^{\circ}$	17	30	296	（21，＋304 30195	11112．：
							26		1，11 1．3
IVit	Pyrotidino	＂	is	$>300^{\circ}$	104	24	235	192．4）307（15．9）	111 123
							2－5	（18．0）310（10．5）	111 1 ：
11	Marpholino		11	297095	（6）	361	2s	（32）－ $290,7.1$	111 120
							\cdots		101］1．1
11,	liperidino	，	6.	＞3010 ${ }^{\circ}$	is	35	201	（31．6）305－6．6．	111 12：
							\cdots	（15．1，261 ，16．3） 295 sh（11．3）	1011 1．1
11,	＇＇yrrolidino	lithanol	7	$291-292^{\circ}$	61	2	上2	（35． $3: 310$（ -4	111 12．2
							$\underline{2} 0$ ） sl	（1）（i） 260 （16．0） 202 sh （10）（1）	10H 1．1
$1 a$	Morpliolino	，	55	－50－2710	is	isi	\cdots		pll 12．1
							$\because 10$	（20，－20才i ！10，it	pll 1：
V：	Piperidino	，	\because	＞3000	83	． 6	230	（2，－－，\％－，	1H1！1
							$\underline{215}$	（19．6）201［16．0）	1011 1
$1:$	PYrrolidino		S\％	2763.277°	（i3）	th	2 S		pli 12？
							211	（25．0） 250 （11．0	1月 ！ 2
1 I	Morplolino	Water	35	$>300{ }^{\circ}$	3	351	22	2－tise（5－7	1H12 12．
							$\underline{29}$	2（1）0）290（1）．t	1.11 1．1
11	β－Hydroxyethylamino	Water		＞3000	．$\%$	，is 1	$26: 3013$	，10，1）205 10.0	101F 12．1
							219	（11．7）	pll 1．1

Va，b

VI
mercapto－2－piperidinopurine（ $\mathrm{IVb}, \mathrm{R}=$ piperidino）， which was shown to be ineffective against sarcoma S180 by Dr．H．C．Reilly and against B82A and P815 leukemias by Dr．J．H．Burchenal，was found by Dr． D．A．Karnofsky to inhibit profoundly cleavage in Sand Dollar embryos at levels of $0.2 \mu \mathrm{~g} . / \mathrm{ml}^{4}$ The remarkably low toxicity of this compound in mice． $\mathrm{LD}_{30}>500 \mathrm{mg} . \mathrm{kg}$ ．with repeated daily i．p．dosage，in
of interest when it is eompared to that of 6 －ammo－δ－ mercaptopurine， $16 \cdots 32 \mathrm{mg} . \mathrm{kg} .{ }^{\bar{p}}$ and of 2 ， 6 －diamino－ $8-$ mercaptopurine．（o． $150 \mathrm{mg} . \mathrm{kg} .{ }^{3}$

Experimental

Ring Closure of Pyrimidines to 8－Mercaptopurines．Fon grams of the appropriate 2－sulstituted，anino－4， $\mathbf{5}$－dimuinu－$(\mathrm{i}$－ bydrosy－（on（i－anino－）promidine＇was suspended in pridin＂ $(32 \mathrm{ml}$ ）（ontaining 50 e acureous potassinm hydraxide（ 1.2 ，wh． and trented with carlon disulfide（ 12 ml ）．The mixture was refluxed for 2 br．，then ponred into water（ 200 ml ．），ind nemtr：lized with glacial acetic acid．The precipitate was conlected．dissolved in 0.1 .1 SaOH，filtered to renove sulfur，and reprecipitated b ． addition of andial aretie aricl．These 8 －mereaptopmines are stable in andilind neutral solutions，but the spectral chango slowly in alkali．

Ring Closure to 8－Azapurine Derivatives．－The 4．5－dimmint pyrimidne（ 4 g ．）suspended in 2 N are tic acid（ $\mathbf{s} 0 \mathrm{ml}$ ，was trent od at． 0° with a solution of sodimm nitrite（ 4 g ．）in water ； 120 mi．．． The mixture was stirred at rom temperatare for $2-3$ hr．Tho azapurine arystallized when the solution was coshed：the arys－ tals were collected and washerl．

6－Amino－2－morpholinopurine．－－4， 0.6 －1＇riaminc－2－1wopholint－
 at 90° for 1 hre．Addition of ethanol and then ether to the arobed reaction mixture gave ：White precipitate（ 0.8 g g．Which was collected，suspended in formanide（ 8 ml ．），and heated at $1: 0^{\circ}$ for I hir．（rystals were collected after cooling the solutiminal were recrstalized from water containing a few drops of ：an－ moniuns lesdrexide to give tho product（0．f g．， 38 ， 1 as white plates．

6－Amino－2－s－hydroxyethylaminopurine，－$-4,6$－ 1 inninio－2－3－
 arid（ 20 mil．）was heated 16.90° and treated with zinc dust （0．5 g．）．After 30 min，a1 90° ，the dark red eodor of the starting material was lost．and the zinc residue was removed lo filtration from the hot reaction mixture．Addition of ethand： 25 mbli，

[^1]| Molecular composition | Caled., \% | | | | -Found, \%- | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | c | H | N | s | c | H | N | |
| $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{OS} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ | 44.3 | 6.1 | 28.2 | 10.7 | 43.4 | 6. 0 | 27.8 | 11.0 |
| $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{~S}$ | 48.0 | 5.6 | 33.6 | 12.8 | 47.8 | 5.8 | 33.5 | 13.0 |
| $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}$ | 45.7 | 5.1 | 35.6 | 13.6 | 45.6 | 5.3 | 35.3 | 13.7 |
| $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$ | 42.7 | 4.4 | 27.7 | 12.7 | 42.3 | 4.4 | 27.3 | 12.3 |
| $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{OS} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ | 48.5 | 6.4 | 23.6 | 10.8 | 48.3 | 6.5 | 23.6 | 11.1 |
| $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OS}$ | 45.6 | 4.7 | 29.5 | 13.5 | 45.5 | 5.1 | 29.4 | 13.4 |
| $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{O}$ | 43.4 | 5.0 | 44.3 | | 43.8 | 5.4 | 44.3 | |
| $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{7}$ | 49.3 | 6.0 | 44.7 | | 49.0 | 6.2 | 45.0 | |
| $\mathrm{C}_{88} \mathrm{H}_{11} \mathrm{~N}_{7}$ | 47.8 | 5.4 | 46.8 | | 47.3 | 5.7 | 46.4 | |
| $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$ | 42.5 | 4.5 | 37.2 | | 42.7 | 4.8 | 37.4 | |
| $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}$ | 49.1 | 5.5 | 38.2 | | 49.4 | 5.5 | 38.0 | |
| $\mathrm{C}_{8} \mathrm{H}_{10-} \mathrm{N}_{6} \mathrm{O}$ | 46.6 | 4.9 | 40.8 | | 47.0 | 5.1 | 40.4 | |
| $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}$ | 49.1 | 5.5 | 38.2 | | 49.4 | 5.8 | 38.6 | |
| $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}$ | 43.3 | 5.2 | 43.3 | | 43.0 | 5.2 | 42.8 | |

addition of glacial acetic acid to $\mathrm{pH} 7 .{ }^{d}$ Compound recrystallized from boiling $\mathrm{H}_{2} \mathrm{O}$ with addition of sufficient ethanol to effect solution.
dissolved in formamide (3 ml .) and heated at 170° for 1 lh .
Addition of etlianol and ether gave a formyl derivative (0.16 g .), m.p. above 300°.

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}: \mathrm{C}, 43.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 37.8$. Found: C, 42.9; H, 4.7; N, 38.1.
The formyl compound (0.1 g .) was deformylated by solution in water and treatment with a few drops of $\mathrm{NH}_{4} \mathrm{OH}$. A solid soon separated which was collected and recrystallized from water to yield white needles (0.065 g .).

Hydroxymethylglyoxal Bisguanylhydrazone ${ }^{1}$

Ti Li Loo, Robert L. Dion, Jack D. Davidson, Richard H. Adamson,
Clinical Pharmacology and Experimental Therap utics Service, Medicine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
and Robert R. Engle ${ }^{\text {a }}$
Riker Laboratories, Inc., Northridge, California
Received May 21, 1963

Several derivatives of guanylhydrazine have been reported to be active in inhibiting animal and human tumors. ${ }^{3 a-c}$ One of the most active compounds of this group, hydroxymethylglyoxal bisguanylhydrazone, was purportedly prepared by an osazone type of reaction between 1 mole of hydroxyacetone and 3 moles of aminoguanidine sulfate in aqueous acetic acid. ${ }^{3 b}$ The

[^2]detailed synthetic procedure and the characterization of the compound have so far not been published. From available chemical, physicochemical, and biological evidence ${ }^{4}$ it soon became apparent that the presumed hydroxymethylglyoxal bisguanylhydrazone was actually methylglyoxal bisguanylhydrazone instead. In view of the ready isomerization of dihydroxyacetone into methylglyoxal ${ }^{5 a-d}$ and the possible failure of the osazone reaction we decided to prepare the hydroxymethylglyoxal bisguanylhydrazone by the direct condensation of aminoguanidine with hydroxymethylglyoxal freshly prepared by the mild oxidation ${ }^{6}$ of dihydroxyacetone. This proved to be successful, and the product so obtained was significantly different from the compound previously reported. ${ }^{3 b}$ Because elementary analysis cannot differentiate between methylglyoxal bisguanylhydrazone dihydrochloride monohydrate $\left(\mathrm{C}_{5} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}\right)$ and hydroxymethylglyoxal bisguanylhydrazone dihydrochloride $\left(\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{O}\right)$ it was necessary to resort to n.m.r. spectroscopy. The data reported below are consistent with the conclusion that the present condensation product is indeed hydroxymethylglyoxal bisguanylhydrazone.

Experimental ${ }^{7}$

Hydroxymethylglyoxal.- This was prepared according to the published procedure ${ }^{6}$ from dihydroxyacetone by oxidation either

[^3]
[^0]: (1) This investigation was supported in part by funds from the National Cancer Institute, National Institutes of Health. Public Health Service (Grant No. CY-3190-07), and from the Atomic Energy Commission (Contract No. AT(30-1)-910).
 (2) R. M. Cresswell and T. Strauss, J. Org. Chem., 28, 2563 (1963).
 (3) In tests carried out in the Division of Experimental Chemotherapy of this Institute.

[^1]:

[^2]: (1) The correct chemical name is $1,1-[($ hydroxymethyl) ethanediylidine dinitriloldiguanidine.
 (2) The work at Riker Laboratories. Inc., was supported by Contract SA-43-ph-3764 from the Cancer Chemotherapy National Service Center, National Cancer Institute, National Institutes of Health, Public Health Service.
 (3) (a) B. L. Freedlander and F. A. French, Cancer Res., 18, 360 (1958); (b) B. L. Freedlander and F. A. French, ibid., 18, 1286 (1958) ; (c) J. F. Holland, E. Milhich, B. Bryant, and A. I. Mulhern, ibid., 21, (1961),

[^3]: (4) J. D. Davidson, R, R. Engle, and R. W. Mancuso, Cancer Chemotherapy Rept., in rress.
 (5) (a) K. Bernhauer and B. Gorlich, Biochem. Z., 212, 462 (1929); (b) H. O. L. Fischer and L. Feldmann, Ber., 62, 863 (1929): (c) H. O. L. Fischer and C. Traube, ibid., 57, 1502 (1924); (d) G. Pinkus, ibid., 31, 36 (1898).
 (6) G. Hesse, F. Ramisch, and K. Renner, ibid., 89, 2137 (1956).
 (7) All melting points are corrected.

